Brain 'Hears' Sound of Silence
While we think of silence as the absence of sound, the brain detects it nonetheless.
.By Cristen Conger
Wed Feb 24, 2010 12:01 PM ET .
Although more research needs to be done, the work carried out by Wehr and his team could lead to new treatments for impaired hearing.
THE GIST:
•The brain responds not only to sound but also to silence, according to a new study.
•Different pathways in the brain respond to the onset and the offset of sounds.
•Better knowing how the brain organizes and groups sounds could lead to more effective hearing therapies and devices.
--------------------------------------------------------------------------------
While we characterize silence as the absence of sound, the brain hears it as loud and clear as any other noise.
In fact, according to a recent study from the University of Oregon, some areas of the brain respond solely to sound termination. Rather than sound stimuli traveling through the same brain pathways from start to finish as previously thought, neuron activity in rats has shown that onset and offset of sounds take separate routes.
Knowing how the brain responds to and organizes sounds could lead to better treatment for those suffering from hearing loss.
"This is something we see a lot of in the brain: that features which are important for perception are computed and then explicitly represented," said Michael Wehr, lead researcher and psychologist at the University of Oregon's Institute of Neuroscience.
Sound information moves through the cochlea and the auditory cortex, the part of the brain responsible for processing sound, as a series of vibrations. By measuring the frequency of those vibrations before and after exposure to brief noises, Wehr and his team discovered that neurons sort the start and end of sounds through separate channels.
"In the auditory system, information about the onset and offset of a sound is implicitly contained in the firing of neurons close to the sensory receptors, but is explicitly represented by on-responses and off-responses in higher brain areas," Wehr said.
These discrete responses are especially important for language processing.
"Examples are the distinction between 'chop' and 'shop,' or between 'stay' and 'say,'" said Marjorie Leek, a research investigator for the National Center for Rehabilitative Auditory Research. "In both of these examples, there's a short, transient-like difference either on the beginning of one of the words or within the syllable. Onset and offset responses would be critical to perceiving these cues related to silence."
Although different neurons may respond to sound onsets and offsets, the brain relies on all of them equally to correctly decipher the timing, source and motion of sounds.
"One of the major challenges of the entire ear-brain system is to preserve precise timing information that is ubiquitous in human speech, that supports information about localization of sound in space, that allows a listener to separate sound sources that are occurring simultaneously, that help to suppress echoes in a highly-reverberant space, and that provide cues to auditory motion," Leek told Discovery News.
For people with hearing problems, the auditory cortex doesn't properly encode frequencies or temporal cues necessary for understanding and recognizing sound information.
Better knowing how the brain organizes and groups sounds could lead to more effective hearing therapies and devices, although Wehr recognizes that there's still much follow-up research to complete.
Cristen Conger is a writer for HowStuffWorks.com.
http://news.discovery.com/human/brain-sounds-silence.html
No comments:
Post a Comment